

COMPA
Repairs and
Reinforcements with
Composite Materials

Technology Overview and Application Cases

Alveus d.o.o. info@comparepairs.com

Use of COMPA Repairs

- Leakage prevention (tightness restoration)
- Prevention of further corrosion development
- Strength reinforcement
- Reduction of crack growth
- Durability

Solution for corroded and cracked ship structures

- Problems of corrosion and cracks on ships occur frequently
- Affecting different systems and structures: pipes, valves, decks, tanks...

COMPA Repairs Composite repair technology

- Fast and reliable
- No hot works involved
- Done during port time or during voyage
- Applicable for complex shapes and structures
- Low added weight

COMPA Repairs technology

- Lamination of carbon and glass fibres reinforced by epoxy resin onto metal surface.
- Epoxy resin hardens and permanently bonds the fibres to the metal, resulting in a new layer of watertight and hard (strong) material.

Composition of COMPA repair

Sub-system	Component	Function
Damaged	Substrate (metal or	Parent damaged material that is
material	FRP)	being repaired
Substrate-	Adhesive	Interface layer required for bonding of composite patch to the metal substrate
to-		
composite		
interface		
Composite patch	Glass fibres	Fabric of first layer of patch laminate; for prevention of galvanic corrosion
	Carbon fibres	Fabric of other layers; for achieving strength and stiffness
	Epoxy resin	Matrix material of patch laminate

COMPA Repairs process: design and engineering prior to repair application

Numerical calculations for repair design

 Optimal patch design obtained using FE analysis

Checking the structure

behaviour

Steps of repair application process

- Surface preparation
- Application of the resin
- Application of the fibres (glass)
- Application of fibres (carbon) and corrosion protection (painting)

Approvals

 COMPA Repairs is in the process of technology qualification with <u>DNV-GL</u>.

 The company is certified by an IACS member, <u>Croatian Register of Shipping</u> (CRS), for repairs of marine piping using COMPA Repairs.

Clients

COMPA Repairs cases of completed repairs

500m of BALLAST PIPING

Problem: 500m of corroded piping was leaking sea water.

Solution: The repair was conducted during the vessel's dry docking.

Repair Duration: 12

days

Class: BV and CRS

FLANGE ON MAIN SEA WATER INTAKE PIPE

Problem: Corroded flange was leaking sea water.

Solution: COMPA repair was conducted during the vessel's stay in port of Valencia.

Repair Duration: 4h

SEWAGE TANK

Problem: Sewage tanks' plating and profiles have undergone extensive corrosion.

Solution: The repair of the 300m2 was conducted during the vessel's dry docking in Luxor, Egypt.

Repair Duration: 3 days

AIR-CONDITIONING UNIT SPACE

Problem: Air-conditioning unit's steel flange and floor exhibited heavy corrosion.

Solution: The repair was conducted during the vessel's dry docking.

Repair Duration: 1 day

Class: GL

CLAPET VALVE

Problem: Two clapet valves have undergone extensive corrosion.

Solution: The repair was conducted during the vessel's dry docking.

Repair Duration: 1 day

Class: CRS

GARAGE FLOOR DETAIL

Problem: The damage on the garage floor was caused by severe corrosion in the corners where the water collects due floor inclination.

Solution: The repair was conducted during the vessel's dry docking.

Repair Duration: 1 day

Class: CRS

BOW THRUSTER TUNNEL

Problem: Bow thruster tunnel surface damage.

Solution: The repair was conducted during the vessel's dry docking.

Repair Duration: 1 day

Class: GL

20m OF THERMAL OIL PIPING IN KEEL TUNNEL

Problem: The mineraloil pipes, located in keel tunnel, were heavily corroded.

Solution: The repair was conducted during the vessel's dry docking.

Repair Duration: 4

days

Class: GL

DECK UNDER AC STATION

Problem: Deck under AC station was leaking sea water.

Solution: The repair was conducted during the vessel's stay in port.

Repair Duration: 7h

BULKHEAD OF THE BALLAST TANK

Problem: Heavily corroded bulkhead was leaking HFO.

Solution: The repair was conducted during the vessel's stay in Savona port.

Repair Duration: 7h

Y-JUNCTION BALLAST INTAKE PIPE

Problem: Heavily corroded Y-junction was leaking sea water.

Solution: Conducted during the vessel's stay in Salerno port.

Repair Duration: 6h

HFO TANK TOP

Problem: Cracked tank top was leaking HFO in rough seas.

Solution: Conducted during the vessel's stay in Savona port.

Repair Duration: 4h +

12h vacuuming

BULKHEAD OF THE MDO FUEL TANK

Problem: Cracked bulkhead was leaking MDO.

Solution: Repair was conducted during the vessel's stay in Antwerp port.

Repair Duration: 3h

BULKHEAD OF THE HFO FUEL TANK

Problem: A heavily corroded bulkhead was leaking HFO.

Solution: Repair was conducted during the vessel's voyage from Le Havre to Antwerp.

Repair Duration: 1 day

HFO TANK TOP

Problem: A heavily corroded bulkhead was leaking HFO.

Solution: Repair of 5 cracks was conducted during the vessel's stay in Antwerp port.

Repair Duration: 2

days

SEA CHEST

Problem: Corrosion on the inner side caused leakage of the sea water.

Solution: Repair was conducted during the vessel's stay in Antwerp port.

Repair Duration: 5h

BALLAST TANK IN DOUBLE BOTTOM

Problem: Multiple bulkheads and the tank top were corroded and leaking sea water.

Solution: Repair was conducted during the vessel's voyage from Hamburg to Antwerp.

Repair Duration: 2

days

BALLAST PIPE IN HEELING TANK

Problem: Flange connecting steel and fibreglass pipe was corroded and leaking sea water.

Solution: Repair was conducted during the vessel's stay in Antwerp port.

Repair Duration: 6h

BULKHEAD BETWEEN BALLAST AND HFO TANK

Problem: The bulkhead was corroded and it was leaking HFO into the ballast tank.

Solution: Repair's conducted during the vessel's stay in Antwerp port.

Repair Duration: 8h

BALLAST PIPE IN ENGINE ROOM

Problem: Multiple pipe were corroded and leaking sea water.

Solution: Repair was conducted during the vessel's stay in Antwerp port.

Repair Duration: 14h

HEELING TANK FLOOR, AND BALLAST TANK BULKHEAD

Problem: The ballast tank floor and bulkhead were corroded and HFO was leaking into the ballast and heeling tanks from adjacent tank.

Solution: Repair was conducted during the vessel's sail.

Repair Duration: 3 days

SEA WATER PIPE ON AN LNG CARRIER

Problem: Sea water pipe was corroded and leaking water.

Solution: Repair was conducted during the vessel's stay in Rotterdam port.

Repair Duration: 10h

Class: LR

Thank You!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 806018.

Alveus d.o.o. info@comparepairs.com